We propose a $SU(5) \times U(1)_X \times U(1)_{PQ}$ model, where $U(1)_X$ is the generalization of the $B-L$ (baryon minus lepton number) gauge symmetry and $U(1)_{PQ}$ is the global Peccei-Quinn (PQ) symmetry. There are four fermions families in $\bf{{\overline 5}} + \bf{10}$ representations of $SU(5)$, a mirror family in $\bf{5}+\bf{{\overline {10}}}$ representations, and three $SU(5)$ singlet Majorana fermions. The $U(1)_X$ related anomalies all cancel in the presence of the Majorana neutrinos. The $SU(5)$ symmetry is broken at $M_{GUT} \simeq (6-9)\times 10^{15}$ GeV and the proton lifetime $\tau_p$ is estimated to be well within the expected sensitivity of the future Hyper-Kamiokande experiment, $\tau_p \lesssim 1.3 \times 10^{35}$ years. The $SU(5)$ breaking also triggers the breaking of the PQ symmetry, resulting in axion dark matter (DM), with the axion decay constant $f_a$ of order $M_{GUT}$ or somewhat larger. The CASPEr experiment can search for such an axion DM candidate. The Hubble parameter during inflation must be low, $H_{inf} \lesssim 10^9 $ GeV, in order to successfully resolve the axion domain wall, axion DM isocurvature and $SU(5)$ monopole problems. With the identification of the $U(1)_X$ breaking Higgs field with the inflaton field, we implement inflection-point inflation, which is capable of realizing the desired value for $H_{inf}$. The vectorlike fermions in the model are essential for achieving successful unification of the SM gauge couplings as well as the phenomenological viability of both axion DM and inflation scenario.
Read full abstract