The effect of small changes in the speci-men-to-detector distance on the unit-cell parameters is examined for synchrotron powder diffraction in Debye-Scherrer (transmission) geometry with a flat area detector. An analytical correction equationis proposed to fix the shift in 2θ values due to speci-men capillary displacement. This equationdoes not require the use of an internal reference material, is applied during the Rietveld refinement step, and is analogous to the speci-men-displacement correction equations for Bragg-Brentano and curved-detector Debye-Scherrer geometry experiments, but has a different functional form. The 2θ correction equationis compared with another speci-men-displacement correction based on the use of an internal reference material in which new integration and calibration parameters of area-detector images are determined. Example data sets showing the effect of a 3.3 mm speci-men displacement on the unit-cell parameters for 25°C CeO2, including both types of displacement correction, are described. These experiments were performed at powder X-ray diffraction beamlines at the National Synchrotron Light Source II at Brookhaven National Laboratory and the Advanced Photon Source at Argonne National Laboratory.
Read full abstract