A debate as to whether heme remains bound or is released in myoglobin molecules incorporated into a didodecyldimethylammonium bromide (DDAB) film adhered to a pyrolytic graphite electrode has prompted a comparison of their electrochemistry by the highly sensitive large-amplitude Fourier transformed ac voltammetric method. The accessibility of third, fourth, and higher harmonic components that are devoid of background current and the enhanced resolution relative to that available in dc voltammetry have allowed a detailed comparison of the Fe(III)/Fe(II) and Fe(II)/Fe(I) redox processes of myoglobin and heme molecules to be undertaken as a function of buffer composition and pH and in the presence and absence of NaBr in the buffer and/or film. Under most conditions examined, only very subtle differences, in the Fe(III)/Fe(II) process were found, implying this process cannot be used to indicate the intactness or otherwise of myoglobin in myoglobin-DDAB films. In contrast, higher order ac harmonics obtained from myoglobin-DDAB and heme-DDAB films reveal pH dependent differences with respect to the Fe(II)/Fe(I) couple. Analysis of the ac harmonics, and with the hypothesis that the Fe(II)/Fe(I) process reflects the myoglobin state, suggests that the majority of the iron heme is released from myoglobin-DDAB (pH 5.0, no NaBr) films in contact with pH 5.0 (0.1 M sodium acetate) buffer solution devoid of or containing NaBr. However, myoglobin films prepared with pH 5.0 buffer containing NaBr shows significant difference in the higher harmonic shapes and midpoint potentials in the Fe(II)/Fe(I) process relative to the case when heme molecules are used, although as noted in other studies, a significant fraction of the Mb is rendered electroinactive in the presence of NaBr. The voltammetric responses of myoglobin and heme-DDAB (pH 5.0) films in contact with pH 7.0 (0.1 M) phosphate buffer solution also exhibit significant differences in the Fe(II)/Fe(I) redox couple in the higher harmonics in contrast to a report [de Groot, M.T.; Merkx, M.; Koper, M. T. M. J. Am. Chem. Soc. 2005, 127, 16224] that claimed identical midpoint potentials apply to both films under conditions of dc cyclic voltammetry. The FT-ac voltammetric data therefore suggest that a substantial fraction of myoglobin in myoglobin-DDAB (pH 5.0) films in contact with pH 7.0 phosphate buffer solution remains intact. No evidence of a catalytic effect that enhanced the released of heme from myoglobin was found at the pyrolytic graphite electrode surface. In summary, higher harmonic ac voltammetric data indicate that the Fe(II)/Fe(I) process but not the Fe(III)/Fe(II) reflects the state of myoglobin in DDAB films. On this basis, films prepared at pH 5.0 should include NaBr, or else films should be prepared at neutral pH to achieve films with myoglobin remains in its intact near native state when a myoglobin-DDAB film is confined to a graphite electrode surface. Otherwise, the release of heme in myoglobin molecules incorporated into a DDAB film is likely to be a dominant reaction pathway.
Read full abstract