ObjectiveA significant number of recent articles in PubMed have full text available in PubMed Central®, and the availability of full texts has been consistently growing. However, it is not currently possible for a user to simultaneously query the contents of both databases and receive a single integrated search result. In this study, we investigate how to score full text articles given a multitoken query and how to combine those full text article scores with scores originating from abstracts and achieve an overall improved retrieval performance. Materials and methodsFor scoring full text articles, we propose a method to combine information coming from different sections by converting the traditionally used BM25 scores into log odds ratio scores which can be treated uniformly. We further propose a method that successfully combines scores from two heterogenous retrieval sources – full text articles and abstract only articles – by balancing the contributions of their respective scores through a probabilistic transformation. We use PubMed click data that consists of queries sampled from PubMed user logs along with a subset of retrieved and clicked documents to train the probabilistic functions and to evaluate retrieval effectiveness. Results and conclusionsRandom ranking achieves 0.579 MAP score on our PubMed click data. BM25 ranking on PubMed abstracts improves the MAP by 10.6%. For full text documents, experiments confirm that BM25 section scores are of different value depending on the section type and are not directly comparable. Naïvely using the body text of articles along with abstract text degrades the overall quality of the search. The proposed log odds ratio scores normalize and combine the contributions of occurrences of query tokens in different sections. By including full text where available, we gain another 0.67%, or 7% relative improvement over abstract alone. We find an advantage in the more accurate estimate of the value of BM25 scores depending on the section from which they were produced. Taking the sum of top three section scores performs the best.
Read full abstract