In the real world, most data are unlabeled, which drives the development of semi-supervised learning (SSL). Among SSL methods, least squares regression (LSR) has attracted attention for its simplicity and efficiency. However, existing semi-supervised LSR approaches suffer from challenges such as the insufficient use of unlabeled data, low pseudo-label accuracy, and inefficient label propagation. To address these issues, this paper proposes dual label propagation-driven least squares regression with feature selection, named DLPLSR, which is a pseudo-label-free SSL framework. DLPLSR employs a fuzzy-graph-based clustering strategy to capture global relationships among all samples, and manifold regularization preserves local geometric consistency, so that it implements the dual label propagation mechanism for comprehensive utilization of unlabeled data. Meanwhile, a dual-feature selection mechanism is established by integrating orthogonal projection for maximizing feature information with an ℓ2,1-norm regularization for eliminating redundancy, thereby jointly enhancing the discriminative power. Benefiting from these two designs, DLPLSR boosts learning performance without pseudo-labeling. Finally, the objective function admits an efficient closed-form solution solvable via an alternating optimization strategy. Extensive experiments on multiple benchmark datasets show the superiority of DLPLSR compared to state-of-the-art LSR-based SSL methods.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
9007 Articles
Published in last 50 years
Related Topics
Articles published on Utility Of Data
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
8559 Search results
Sort by Recency