The exponential increasement and the attributes of medical data drive the requirement for secure medical data archiving. DNA data storage shows promise for storing sensitive and important data like medical records due to its high density and endurance. Nevertheless, current DNA data storage working scheme generally does not fully consider the data encryption, posing a risk of data corruption by routine DNA sequencing. Here, we designed a “multi-layer” encryption pipeline for medical data archiving. Initially, digital information was encrypted using Blowfish algorithm at information technology (IT) layer, followed by two-layer data encryption at the biotechnology (BT) layer. The first BT layer exploited the molecular weight of synthetic DNA or nucleoside to encrypt the key, while the second BT layer encrypted digital information within DNA sequences. Consequently, decryption involved layer-by-layer interpretation of data, including mass spectroscopy, sequencing, and Blowfish decryption, significantly enhancing data security. Utilizing mass spectroscopy to retrieve information allows for employment of both natural and unnatural nucleosides, as well as their synthetic oligonucleotides, for data storage, thereby considerably boosting scalability. Our work implies expanded flexibility of DNA-based data storage, highlighting the potential for leveraging various physical and chemical characteristics of DNA molecules to encode and access digital information.
Read full abstract