Customer segmentation plays a pivotal role in driving marketing strategies and improving customer retention across various industries. This study explores the application of the RFM (Recency, Frequency, Monetary) model for customer segmentation in a Software-as-a-Service (SaaS) business, using Python for efficient data processing and analysis. By analyzing one year of customer purchase data, we segmented customers into key groups such as "Champions," "Loyal Customers," and "At Risk." The results highlight that targeted discount strategies significantly affect profitability, especially for high-value customer segments. Furthermore, the research builds upon existing methodologies, demonstrating how Python-based implementations streamline RFM analysis and allow for scalable solutions in business contexts, as illustrated in prior works by Hermawan et al. (2024). This study offers actionable recommendations, including tailored discounting, loyalty programs, and personalized engagement strategies, to enhance customer retention and business profitability. The findings underscore the importance of data-driven marketing approaches for customer segmentation and engagement, reinforcing the relevance of the RFM model in modern business environments.
Read full abstract