Abstract Introduction In the desert climates of the United States, plentiful sunlight and high summer temperatures cause significant burn injuries from hot pavement and other surfaces. Although it is well known that surfaces reach temperatures sufficient to cause full-thickness burns, the peak temperature, time of day, and highest risk materials is not well described. This work measured continuous temperature measurements of six materials in a desert climate over a five-month period. Methods Six different solid materials common in an urban environment were utilized for measurement. Asphalt, brick, concrete, sand, porous rock, and galvanized metal were equipped with thermocouples attached to a data acquisition module. All solid materials except metal were placed in a 2’x2’x3.5” form, and identical samples were placed in both shade and direct sunlight. Ambient temperature was recorded, and sunlight intensity was measured using a pyranometer. Measurement time interval was set at three minutes. A computational fluid dynamics (CFD) model was created using Star CCM+ to validate the data. Contour plots of temperature, solar irradiance, and time of day were created using MiniTab for all surfaces tested. Results 75,000 temperature measurements were obtained from March through August 2020. Maximum recorded temperatures for sunlight-exposed samples of porous rock was 170 F, asphalt 166 F, brick 152 F, concrete 144 F, metal 144 F, and sand 143 F. Peak temperatures were recorded on August 6, 2020 at 2:10 pm, when ambient temperature was 120 F and sunlight intensity 940 W/m2 (Table). Temperatures ranged from 36 F - 56 F higher than identical materials in the shade at the same time. The highest daily temperatures were achieved between 2:00 pm to 4:00 pm due to maximum solar irradiance. Contour plots of surface temperature as function of solar irradiation and time of day were created for all surfaces tested. Nearly identical results obtained from the CFD models to the experimentally collected data, which validated the experimental data. Conclusions Surfaces exposed to direct, continuous sunlight in a desert climate achieve temperatures from 143 F to 170 F in the early afternoon and are high enough to cause significant injury with sufficient exposure. Porous rock reached the highest temperature, followed closely by asphalt. This information is useful to inform the public of the dangers of exposed surfaces in a desert climate.
Read full abstract