Investigations of the microbial community structures, potential functions and physicochemical property are useful for risk assessments, microbial monitoring, and the biogeochemical behaviour of contained environment by Acid Mine Drainage (AMD). In this study, nine sediment sampling sites were selected at Panjiaozhuang Town, in Guizhou, China to analyze the pollution conditions and their influences on microorganisms. The physicochemical property results showed significant differences in sediment and water physico chemical properties at different group. Compared to the DS group, further studies revealed that US group (severely affected areas) showed strong acidity and high concentrations of heavy metals and salts. The community structure analysis indicated that AMD might enhance the functional bacteria, such as Thiomonas and Ferrovum (increases of 1.2 and 8.1 percent, respectively), and significantly increased the concentrations of Fe and sulfate through the oxidation of pyrite. The KEGG enrichment analysis demonstrated showed that the AMD promoted the migration of sulfur and Fe into water by enhancing bacterial metabolic pathways, such as dark oxidation of sulfur compounds and dark iron oxidation. This article is of great significance for understanding the transformation of pollutants by AMD and provides reference for subsequent bioremediation.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
108 Articles
Published in last 50 years
Related Topics
Articles published on Dark Oxidation
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
113 Search results
Sort by Recency