Bifunctional electrocatalysts for oxygen electrocatalysis are typically developed by combining separate OER and ORR electrocatalysts to form composites, often requiring complex synthesis methods. In this study, we present a simplified approach by mechanical blending of BaSr2CoTiSbO9 (BSCTS), an OER catalyst, with BaSr2MnTiSbO9 (BSMTS), an ORR catalyst, to construct a composite bifunctional electrocatalyst. The DFT calculation supports superior ORR activity of BSMTS due to an uplifted Mn d-band center than the Co d-band and its proximity to the Fermi level, whereas the greater OER activity of BSCTS is due to the uplifted O 2p band center. While microstructural similarity of BSCTS and BSMTS facilitates efficient mixing for composite formation, the mechanical blending avoids intervention of complex synthesis procedures. The resulting bifunctional composite electrocatalyst demonstrates excellent performance with a bifunctional index of 0.72 V and a peak power density of 125 mW/cm2 when used as an air cathode electrocatalyst in Zn-air battery (ZAB). This approach underscores the importance of mechanical blending of microstructurally compatible OER and ORR catalysts in designing practical bifunctional electrocatalysts for zinc-air batteries.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
2575 Articles
Published in last 50 years
Related Topics
Articles published on D-band Center
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
2554 Search results
Sort by Recency