This study added nano-sized Al2O3, Boron, and TiO2 powders to the epoxy polymer at 0.5% and 1% ratios. Abrasive wear resistance properties of nanoparticle-reinforced epoxy polymers were investigated. First cylindrical specimens with and without additives were prepared for realizing the experimental research. Pin-on discs were used for the wear test of epoxy samples. The mass losses were measured via a precision scale. According to the results, the boron nanoparticles have increased the epoxy specimens’ resistance. As a result of the experimental studies, it was observed that the wear resistance of the epoxy composite increased with each nano-sized powder added to the epoxy. SEM and optical profilometry investigated the composites’ friction coefficient and surface morphology. As a result of friction coefficient and wear weight loss tests, the highest wear resistance was obtained in 1% boron powder nano-reinforced epoxy composites. It was observed that the epoxy friction coefficient was in the range of 0.4–0.6, which decreased to the range of 0.2–0.4 with the addition of nano boron. The surface roughness value after epoxy wear was measured as 1.4 μm. With the addition of nano boron, this value was measured as 0.32 μm. Optical profilometry and SEM imaging results also support these values.
Read full abstract