Ultra-high-pressure tubular reactors are crucial pieces of equipment for polyethylene production. Long-term operation under high temperature, high pressure, and other extremely harsh conditions can lead to various defects, with circumferential cracks posing a major safety risk. Detecting cracks is challenging, particularly when they are under a protective layer of a certain thickness. This study designed a pulsed eddy current differential probe to detect circumferential cracks in ultra-high-pressure tubular reactors, with the lift-off distance acting as a protective layer. Detection models for traditional cylindrical and semi-circular excitation differential probes were established using finite element simulations. Corresponding experiments under different lift-off conditions were carried out, and the model's accuracy was verified by the consistency between the simulation results and experimental data. The distribution of the eddy current field under different conditions and the disturbances caused by cracks at various positions to the detection signal were then calculated in the simulations. The simulation results showed that the cracks significantly disturbed the eddy current field of the semi-circular excitation differential probe compared with that of the traditional cylindrical probe. The designed differential probe effectively detected circumferential cracks of specific lengths and depths using the difference in the voltage signals. The experimental results were in agreement with the simulation results, showing that the designed probe could effectively detect 20 mm-long circumferential cracks at a lift-off of 60 mm. The experimental results also show that the probe's detection coverage area in the axial direction varied with the lift-off height. The probe design and findings are valuable for detecting cracks in ultra-high-pressure tubular reactors with protective layers.
Read full abstract