Machining nickel-based super alloys such as Inconel 718 generates a high thermal load induced via friction and plastic deformation, causing these alloys to be among most difficult-to-cut materials. Localized heat generation occurring in machining induces high temperature gradients. Experimental techniques for determining cutting tool temperature are challenging due to the small dimensions of the heat source and the chips produced, making it difficult to observe the tool-chip interface. Therefore, theoretical analysis of cutting temperatures is crucial for understanding heat generation and temperature distribution during cutting operations. Periodic heating and cooling occurring during cutting and interruption, respectively, are modeled using a hybrid analytical and finite element (FE) transient thermal model. In addition to identifying a transition distance associated with initial period of chip formation (IPCF) from apparent coefficient of friction results using a sigmoid function, the transition temperature is also identified using the thermal model. The model is validated experimentally by measuring the tool-chip interface temperature using a two-color pyrometer at a specific cutting distance. Due to the cyclic behavior in interrupted cutting, where a steady-state condition may or may not be achieved, transient thermal modeling is required in this case. Input parameters required to identify the heat flux for the transient thermal model are obtained experimentally and the definitions of heat-flux-reducing factors along the cutting path are associated with interruptions and the repeating IPCF. The thermal model consists of two main parts: one is related to identifying the heat flux, and the other part involves the determination of the temperature field within the tool using a partial differential equation (PDE) solved numerically via a 2D finite element method.
Read full abstract