DNA methylation signatures ("episignatures") can be used as biomarkers of genetic aberrations, clinical phenotypes, and environmental exposures in rare diseases. Episignatures are utilized in molecular diagnostics and can clarify variants of uncertain significance. A growing number of disease genes, including epilepsy genes, exhibit robust and reproducible episignatures. However, whether SCN1A, the most prominent epilepsy gene, has one or more episignatures has not yet been determined. We generated genome-wide DNA methylation data and performed episignature analysis on 64 individuals with Dravet syndrome due to pathogenic loss-of-function (LOF) variants in SCN1A and seven individuals with early infantile SCN1A developmental and epileptic encephalopathy due to pathogenic gain-of-function (GOF) variants in SCN1A, relative to a large reference database of controls and rare disease episignature-positive cohorts. We analyzed all samples with LOF variants together and performed separate analyses for missense, nonsense, and GOF variant cohorts. A reproducible blood-derived episignature was not evident in any of the cohorts using current analytical approaches and reference data.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
29 Articles
Published in last 50 years
Related Topics
Articles published on Current Reference Data
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
28 Search results
Sort by Recency