2D Ising superconductivity emerges in noncentrosymmetric 2D materials, differing from conventional 2D/3D superconductivity. Here, we report the synthesis of a new polymorph of intercalated layered materials, where two layers of Sn are intercalated in between every two layers of TaSe2 (2Sn-2TaSe2), in contrast to the commonly observed single-layer intercalation. Remarkably, the as-grown 2Sn-2TaSe2 single crystals possess a high quality of crystallinity and showcase 3D Ising superconductivity. Transport measurements and theoretical calculations show that the 2Sn-2TaSe2 having C3v point group symmetry induces formation of Ising pairs, which intriguingly exhibits, on one hand, an in-plane upper critical field surpassing the Pauli limit by a factor of 2.6 like a 2D Ising superconductor but, on the other hand, a temperature- and field-dependent conductivity characteristic of conventional 3D superconductivity. Our findings demonstrate the persistent 2D Ising pairing in 3D, paving the way for exploring dimensional physical behaviors by intercalating layered materials.
Read full abstract