Heterogeneous integration of compound semiconductors on a Si platform leads to advanced device applications in the field of Si photonics and high frequency electronics. However, the unavoidable bubbles formed at the bonding interface are detrimental for achieving a high yield of dissimilar semiconductor integration by the direct wafer bonding technology. In this work, lateral outgassing surface trenches (LOTs) are introduced to efficiently inhibit the bubbles. It is found that the chemical reactions in InP–Si bonding are similar to those in Si–Si bonding, and the generated gas can escape via the LOTs. The outgassing efficiency is dominated by LOTs’ spacing, and moreover, the relationship between bubble formation and the LOT’s structure is well described by a thermodynamic model. With the method explored in this work, a 2-in. bubble-free crystalline InP thin film integrated on the Si substrate with LOTs is obtained by the ion-slicing and wafer bonding technology. The quantum well active region grown on this Si-based InP film shows a superior photoemission efficiency, and it is found to be 65% as compared to its bulk counterpart.
Read full abstract