Background: Delayed and failed fracture repair and bone healing remain significant public health issues. Dietary supplements serve as a safe, inexpensive, and non-surgical means to aid in different stages of fracture repair. Studies have shown that amorphous calcium carbonate (ACC) is absorbed 2 to 4.6 times more than crystalline calcium carbonate in humans. Objectives: In the present study, we assessed the efficacy of ACC on femoral fracture healing in a male Wistar rat model. Methods: Eighty male Wistar rats were randomly divided into five groups (n = six per group): sham, fracture + water, fracture + 0.5× (206 mg/kg) ACC, fracture + 1× ACC (412 mg/kg), and fracture + 1.5× (618 mg/kg) ACC, where ACC refers to the equivalent supplemental dose of ACC for humans. A 21-gauge needle was placed in the left femoral shaft, and we then waited for three weeks. After three weeks, the sham group of rats was left without fractures, while the remaining animals had their left mid-femur fractured with an impactor, followed by treatment with different doses of oral ACC for three weeks. Weight-bearing capacity, microcomputed tomography, and serum biomarkers were evaluated weekly. After three weeks, the rats were sacrificed, and their femur bones were isolated to conduct an evaluation of biomechanical strength and histological analysis. Results: Weight-bearing tests showed that treatment with ACC at all the tested doses led to a significant increase in weight-bearing capacity compared to the controls. In addition, microcomputed tomography and histological studies revealed that ACC treatment improved callus formation dose-dependently. Moreover, biomechanical strength was improved in a dose-dependent fashion in ACC-treated rats compared to the controls. In addition, supplementation with ACC significantly lowered bone formation and resorption marker levels two–three weeks post-fracture induction, indicating accelerated fracture recovery. Conclusions: Our preliminary data demonstrate that ACC supplementation improves fracture healing, with ACC-supplemented rats healing in a shorter time than control rats.
Read full abstract