Research Article| March 01, 2009 Neoproterozoic glaciation on a carbonate platform margin in Arctic Alaska and the origin of the North Slope subterrane Francis A. Macdonald; Francis A. Macdonald † 1Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, USA †E-mail: fmacdon@fas.harvard.edu Search for other works by this author on: GSW Google Scholar William C. McClelland; William C. McClelland 2Department of Geological Sciences, University of Idaho, Moscow, Idaho 83843, USA Search for other works by this author on: GSW Google Scholar Daniel P. Schrag; Daniel P. Schrag 3Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, USA Search for other works by this author on: GSW Google Scholar Winston P. Macdonald Winston P. Macdonald 4Biology Department, Boston University, 5 Cummington Street, Boston, Massachusetts 02215, USA Search for other works by this author on: GSW Google Scholar Author and Article Information Francis A. Macdonald † 1Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, USA William C. McClelland 2Department of Geological Sciences, University of Idaho, Moscow, Idaho 83843, USA Daniel P. Schrag 3Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, USA Winston P. Macdonald 4Biology Department, Boston University, 5 Cummington Street, Boston, Massachusetts 02215, USA †E-mail: fmacdon@fas.harvard.edu Publisher: Geological Society of America Received: 04 Jan 2008 Revision Received: 27 Apr 2008 Accepted: 27 May 2008 First Online: 02 Mar 2017 Online ISSN: 1943-2674 Print ISSN: 0016-7606 © 2009 Geological Society of America GSA Bulletin (2009) 121 (3-4): 448–473. https://doi.org/10.1130/B26401.1 Article history Received: 04 Jan 2008 Revision Received: 27 Apr 2008 Accepted: 27 May 2008 First Online: 02 Mar 2017 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Get Permissions Search Site Citation Francis A. Macdonald, William C. McClelland, Daniel P. Schrag, Winston P. Macdonald; Neoproterozoic glaciation on a carbonate platform margin in Arctic Alaska and the origin of the North Slope subterrane. GSA Bulletin 2009;; 121 (3-4): 448–473. doi: https://doi.org/10.1130/B26401.1 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyGSA Bulletin Search Advanced Search Abstract The rotation model for the opening of the Canada Basin of the Arctic Ocean predicts stratigraphic links between the Alaskan North Slope and the Canadian Arctic islands. The Katakturuk Dolomite is a 2080-m-thick Neoproterozoic carbonate succession exposed in the northeastern Brooks Range of Arctic Alaska. These strata have previously been correlated with the pre–723 Ma Shaler Supergroup of the Amundson Basin. Herein we report new composite δ13C profiles and detrital zircon ages that test this connection. We go further and use stratigraphic markers and a compilation of δ13C chemostratigraphy from around the world, tied to U-Pb ages, to derive an age model for deposition of the Katakturuk Dolomite. In particular, we report the identification of ca. 760 Ma detrital zircons in strata underlying the Katakturuk Dolomite. Moreover, a diamictite present at the base of the Katakturuk Dolomite is capped by a dark-colored limestone with peculiar roll-up structures. Chemostratigraphy and lithostratigraphy suggest this is an early-Cryogenian glacial diamictite-cap carbonate couplet and that deposition of the Katakturuk Dolomite spanned much of the late Neoproterozoic. Approximately 500 m above the diamictite, a micropeloidal dolomite, with idiosyncratic textures that are characteristic of basal Ediacaran cap carbonates, such as tubestone stromatolites, giant wave ripples, and decameters of pseudomorphosed former aragonite crystal fans, rests on a silicified surface. Chemostratigraphic correlations also indicate a large increase in sedimentation rate in the upper ~1 km of the Katakturuk Dolomite and in the overlying lower Nanook Limestone. We suggest that the accompanying increase in accommodation space, along with the presence of two low-angle unconformities within these strata, are the product of late Ediacaran rifting along the southern margin of the North Slope subterrane. There are no strata present in the Amundson Basin that are potentially correlative with the late Neoproterozoic Katakturuk Dolomite, as the Cambrian Saline River Formation rests on the ca. 723 Ma Natkusiak Formation. Detrital zircon geochronology, chemostratigraphic correlations, and the style of sedimentation are inconsistent with both a Canadian Arctic origin of the North Slope subterrane and a simple rotation model for the origin of the Arctic Ocean. If the rotation model is to be retained, the exotic North Slope subterrane must have accreted to northwest Laurentia in the Early to Middle Devonian. You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Read full abstract