PurposeTo demonstrate the utility of intraoperative neuromonitoring (IONM) as an effective method of passive thermoprotection against cryogenic injury to neural structures during musculoskeletal and lymph node cryoablation. Material and MethodsTwenty-nine patients (16 men; mean age among men, 68.6 years [range, 45–90 years]; mean age among women, 62.6 years [range, 28–88 years]) underwent 33 cryoablations of musculoskeletal and lymph node lesions. Transcranial electrical motor-evoked potentials (MEPs) and somatosensory-evoked potentials (SSEPs) of target nerves were recorded throughout the ablations. Significant change was defined as waveform amplitude reduction greater than 30% (MEP) and 50% (SSEP). The primary outcomes of this study were immediate postprocedural neurologic deficits and frequency of significant MEP and SSEP amplitude reductions. ResultsSignificant amplitude reductions were detected in 54.5% (18/33) of MEP tracings and 0% (0/33) of SSEP tracings. Following each occurrence of significant amplitude reductions, freeze cycles were promptly terminated. Intraprocedurally, 13 patients had full recovery of amplitudes to baseline, 11 of whom had additional freeze cycles completed. In 5 of 33 (15.2%) cryoablations, there were immediate postprocedural neurologic deficits (moderate adverse events). Unrecovered MEPs conferred a relative risk for neurologic sequela of 23.2 (95% CI, 3.22–167.21; P < .001) versus those with recovered MEPs. All 5 patients had complete neurologic recovery by 12 months. ConclusionsIONM (with MEP but not SSEP) is a reliable and safe method of passive thermoprotection of neurologic structures during cryoablation. It provides early detection of changes in nerve conduction, which when addressed quickly, may result in complete restoration of MEP signals within the procedure and minimize risk of cryogenic neural injury.
Read full abstract