The CDC crossmatch test is being phased out in solid organ donor allocation, and standard luminex single antigen bead assays do not differentiate complement activating function of HLA antibodies. The current study investigated the LIFECODES C3d-binding assay to determine if it could accurately predict actual T and B cell CDC results in a cohort of highly sensitised patients. Nineteen serum samples from different highly sensitised solid organ patients were crossmatched against cells from 62 unique donors, with 174 total T and B cell crossmatches performed. The sera also underwent SAB assay using OLI and LC platforms, and C3d-binding assay. Complement activating ability of each unique HLA antibody specificity detected using SAB was assigned based on the actual CDC results, which was then used to determine the accuracy of the C3d-binding assay. The C3d-binding assay was found to be highly accurate, with sensitivity of 95%, specificity 89% and negative predictive value 97% for class I DSA and the T cell CDC crossmatch results. Furthermore, we found 100% accuracy for prediction of the complement activating function of HLA-C antibodies. Negative predictive value of above 90% was also found for HLA class II DSA. C3d-binding proved more accurate than virtual crossmatch alone to predict CDC results. This study confirms that the C3d-binding assay predicts actual CDC crossmatch results accurately. In particular, the high negative predictive value of the C3d-binding assay may be extremely useful to define HLA antibodies that do not activate complement in highly sensitised recipients.
Read full abstract