<p>Recently, significant research has been conducted on magnetic metamaterials that exhibit negative permeability and operate within the GHz and MHz frequency ranges. These metamaterial structures can be utilized to improve the efficiency of near-field wireless power transfer systems, subterranean communication, and position sensors. However, in most cases, they are only designed to work for a single application. This study focuses on examining the transmission of magneto-inductive waves in magnetic metamaterial structures with ordered arrangements. This structure can be used simultaneously for wireless power transfer and near-field communications. The unit cell is formed by a spiral with five turns that is implanted on a FR-4 substrate. An external capacitor was used to regulate the resonant frequency of the magnetic metamaterial unit cell. The properties of magneto-inductive waves, including reflection, transmission response, and field distribution on the waveguide, have been extensively computed and simulated. The obtained results indicate that both 1-dimensional and 2-dimensional magnetic metamaterial configurations possess the ability to conduct electromagnetic waves and propagate magnetic field energy at a frequency of 13.56 MHz. The straight and cross path configurations were also investigated to identify the optimal configuration on the 2-dimensional metamaterial slab.</p>
Read full abstract