Printed electronics on flexible thin film has challenged and inspired the motivation of scientists in many fields. Among traditional printing methods such as stamping, flexography, offset, screen-printing, and inkjet, the gravure method is expected to reduce costs and increase productivity for printed electronics applications. In this research, conductive microfine line patterns, which print out the layer as microelectrodes for organic thin film transistor (OTFT) or microcircuit lines, have been designed with different size widths and lengths according to the printing direction, MD (machine direction), and CMD (cross machine direction, or transverse direction, TD, which is popularly used in industry). These patterns were printed with nano-particle silver ink on PI thin film, but had some serious problems with discontinuity and less filling after doctoring and printing. To solve these problems, the doctoring effect is investigated and analyzed before ink transferring, mainly in the printing machine direction and CMD. The uniformity and accuracy of the microfine lines are controlled and improved in order to achieve the stability of the printed pattern lines. In this work, considering the effect of the deflection of the doctor blade in the CMD (transverse direction), a doctoring model in the CMD is proposed and compared with the experimental result. Experimentally, proper doctoring conditions like blade stiffness and doctoring pressure are sought.
Read full abstract