Extracellular vesicle (EV) microRNAs (miRNAs) are critical liquid-biopsy biomarkers that facilitate noninvasive clinical diagnosis and disease monitoring. However, conventional methods for detecting these miRNAs require EV lysis, which is expensive, labor-intensive, and time-consuming. Inspired by natural viral infection mechanisms, a novel strategy is developed for detecting EV miRNAs in situ via vesicle fusion mediated by viral fusion proteins. A padlock probe encapsulated within fusogenic liposomes is activated by target miRNAs, thereby initiating a highly sensitive and specific rolling circle amplification (RCA) reaction. Three EV miRNAs associated with atherosclerosis are successfully analyzed using this method, thereby enabling clear differentiation of healthy and diseased mice at several disease stages. Overall, the developed platform offers a simple approach for detecting EV miRNAs and demonstrates significant potential for broad use in applications involving disease diagnosis and monitoring.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
423 Articles
Published in last 50 years
Articles published on Critical Biomarkers
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
389 Search results
Sort by Recency