BackgroundPhysalis L. is a genus of herbaceous plants of the family Solanaceae, which has important medicinal, edible, and ornamental values. The morphological characteristics of Physalis species are similar, and it is difficult to rapidly and accurately distinguish them based only on morphological characteristics. At present, the species classification and phylogeny of Physalis are still controversial. In this study, the complete chloroplast (cp) genomes of four Physalis species (Physalis angulata, P. alkekengi var. franchetii, P. minima and P. pubescens) were sequenced, and the first comprehensive cp genome analysis of Physalis was performed, which included the previously published cp genome sequence of Physalis peruviana.ResultsThe Physalis cp genomes exhibited typical quadripartite and circular structures, and were relatively conserved in their structure and gene synteny. However, the Physalis cp genomes showed obvious variations at four regional boundaries, especially those of the inverted repeat and the large single-copy regions. The cp genomes’ lengths ranged from 156,578 bp to 157,007 bp. A total of 114 different genes, 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes, were observed in four new sequenced Physalis cp genomes. Differences in repeat sequences and simple sequence repeats were detected among the Physalis cp genomes. Phylogenetic relationships among 36 species of 11 genera of Solanaceae based on their cp genomes placed Physalis in the middle and upper part of the phylogenetic tree, with a monophyletic evolution having a 100% bootstrap value.ConclusionOur results enrich the data on the cp genomes of the genus Physalis. The availability of these cp genomes will provide abundant information for further species identification, increase the taxonomic and phylogenetic resolution of Physalis, and assist in the investigation and utilization of Physalis plants.
Read full abstract