A hundred-watt-level peak-power linearly polarized Ho,Pr:GdScO3 laser with narrow pulses was first realized at ∼3 µm through a combination of theoretical simulation and experiment. This is the narrowest pulse width, and the highest peak power has been achieved in a passively pulsed Ho,Pr co-doped laser to date. We realized a linearly polarized narrow-pulsed laser at ∼3 µm, with a maximum peak power of 185 W and shortest pulse width of 42 ns. A further theoretical model was built by simulating the dynamic process of the mid-infrared (MIR) pulsed Ho,Pr:GdScO3 laser using coupled rate equations. The numerical simulation results were fundamentally in agreement with the experimental results, which verified the potential of Ho,Pr:GdScO3 crystals to produce sub-50-ns hundred-watt peak power MIR lasers. The results presented an effective way to achieve high-peak-power, narrow-pulse, and linearly-polarized lasers, which have significant research potential and promising applications in the MIR band.
Read full abstract