The lateral correlated adsorption of polyions onto oppositely charged vesicles, leading to the formation of stable equilibrium clusters of mesoscopic size, is associated to the release of a fraction of counterions, initially condensed on the polyion chains. This ulterior release of counterions provokes an increase of the number of free ions, besides the ones due to the partial ionization of both charged particles and polyions, that can be appropriately monitored by means of electrical conductivity measurements of the whole system. We have investigated this behavior in a suspension of cationic vesicles made up by dioleoyl trimethyl ammonium propane (DOTAP) liposomial vesicles interacting with an anionic polyelectrolyte composed by polyacrylate sodium salt. This system has been in the past extensively studied by us by means of different experimental techniques, and its behavior has been sufficiently characterized, as far as hydrodynamic and electrical properties are concerned. In this note, we report on the dc electrical conductivity behavior during the whole aggregation process, from the single polyion-coated liposomal particles, to polyion-induced liposome clusters, to finally polyion-fully covered liposomes, in polyion excess conditions. We have evaluated the excess of released counterions on the basis of the standard theory of the electrical properties of aqueous charged solutions and compared this quantity with the one predicted by the lateral correlation adsorption model. The agreement is quite good, offering strong experimental evidence of the role played by the release of counterions in the aggregation process. Finally, we have considered a similar liposomial system, where the lateral correlation adsorption was inhibited by structural reasons, having replaced the polyion by a simple electrolyte, whose dissociated ions will adsorb randomly at the particle surface, rather than in a correlated manner. In this case, no counterion release upon complexation occurs, and the electrical conductivity of the suspension approaches the one theoretically expected.
Read full abstract