Angular streaking technique employs a close-to-circularly polarized laser pulse to build a mapping between the instant of maximum ionization and the most probable emission angle in the photoelectron momentum distribution, thereby enabling the probe of laser-induced electron dynamics in atoms and molecules with attosecond temporal resolution. Here, through the jointed experimental observations and improved Coulomb-corrected strong-field approximation statistical simulations, we identify that electrons emitted at different initial ionization times converge to the most probable emission angle due to the previously-unexpected Coulomb focusing triggered by the nonadiabatic laser-induced electron tunneling. We reveal that the Coulomb focusing induces the observed nonintuitive energy-dependent trend in the angular streaking measurements on the nonadiabatic tunneling, and that tunneling dynamics under the classically forbidden barrier can leave fingerprints on the resulting signals. Our findings have significant implications for the decoding of the intricate tunneling dynamics with attosecond angular streaking.
Read full abstract