We study experimentally the three-body Coulomb explosion dynamics of carbon dioxide dimer <inline-formula><tex-math id="M5">\begin{document}${\rm{(CO_2)}}_{2}^{4+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M5.png"/></alternatives></inline-formula> ions produced by intense femtosecond laser field. The three-dimensional momentum vectors as well as kinetic energy are measured for the correlated fragmental ions in a cold-target recoil-ion momentum spectrometer (COLTRIMS). Carbon dioxide dimer is produced during the supersonic expansion of <inline-formula><tex-math id="M6">\begin{document}${\rm{(CO_2)_2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M6.png"/></alternatives></inline-formula> gas from a 30 μm nozzle with 10 bar backing pressure. The linearly polarized laser pulses with a pulse duration (full width at half maximum of the peak intensity) of 25 fs, a central wavelength of 790 nm, a repetition rate of 10 kHz, and peak laser intensities on the order of <inline-formula><tex-math id="M8">\begin{document}${\rm{8 \times10^{14}}}\;{\rm{W/cm^2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M8.png"/></alternatives></inline-formula> are produced by a femtosecond Ti:sapphire multipass amplification system. We concentrate on the three-particle breakup channel <inline-formula><tex-math id="M10">\begin{document}${\rm{(CO_2)_2^{4+}}} \rightarrow {\rm{CO}}_{2}^{2+}+{\rm{CO^+}}+ {\rm{O^+}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M10.png"/></alternatives></inline-formula>. The two-particle breakup channels, <inline-formula><tex-math id="M15">\begin{document}${\rm{(CO_2)_2^{4+}}} \rightarrow {\rm{CO}}_{2}^{2+}+ {\rm{CO_{2}}^{2+}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M15.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M19">\begin{document}${\rm{CO_2^{2+}}\rightarrow CO^++O^+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M19.png"/></alternatives></inline-formula>, are selected as well for reference. The fragmental ions are guided by a homogenous electric field of 60 V/cm toward microchannel plates position-sensitive detector. The time of flight (TOF) and position of the fragmental ions are recorded to reconstruct their three-dimensional momenta. By designing some constraints to filter the experimental data, we select the data from different dissociative channels. The results demonstrate that the three-body Coulomb explosion of <inline-formula><tex-math id="M20">\begin{document}${\rm{(CO_2)}}_{2}^{4+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M20.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M20.png"/></alternatives></inline-formula> ions break into <inline-formula><tex-math id="M21">\begin{document}${\rm{CO}}_{2}^{2+}+{\rm{CO}}^++{\rm{O}}^+$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M21.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M21.png"/></alternatives></inline-formula> through two mechanisms: sequential fragmentation and non-sequential fragmentation, in which the sequential fragmentation channel is dominant. These three fragmental ions are produced almost instantaneously in a single dynamic process for the non-sequential fragmentation channel but stepwise for the sequential fragmentation. In the first step, the weak van der Waals bond breaks, <inline-formula><tex-math id="M22">\begin{document}${\rm{(CO_2)}}_{2}^{4+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M22.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M22.png"/></alternatives></inline-formula> dissociates into two <inline-formula><tex-math id="M23">\begin{document}${\rm{CO}}_{2}^{2+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M23.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M23.png"/></alternatives></inline-formula> ions; and then one of the C=O covalent bonds of <inline-formula><tex-math id="M24">\begin{document}${\rm{CO}}_{2}^{2+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M24.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M24.png"/></alternatives></inline-formula> breaks up, the <inline-formula><tex-math id="M25">\begin{document}${\rm{CO}}_{2}^{2+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M25.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M25.png"/></alternatives></inline-formula> ion breaks into <inline-formula><tex-math id="M26">\begin{document}${\rm{CO^+}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M26.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M26.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M27">\begin{document}${\rm{O^+}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M27.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M27.png"/></alternatives></inline-formula>. The time interval between the two steps is longer than the rotational period of the intermediate <inline-formula><tex-math id="M28">\begin{document}${\rm{CO}}_{2}^{2+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M28.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M28.png"/></alternatives></inline-formula> ions, which is demonstrated by the circle structure exhibited in the Newton diagram. We find that the sequential fragmentation channel plays a dominant role in the three-body Coulomb explosion of <inline-formula><tex-math id="M29">\begin{document}${\rm{(CO_2)}}_{2}^{4+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M29.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M29.png"/></alternatives></inline-formula> ions in comparison of the event ratio of the two fragmentation channels.
Read full abstract