Published in last 50 years
Related Topics
Articles published on Co-transcriptional Folding
- Research Article
- 10.1371/journal.pcbi.1013472
- Sep 1, 2025
- PLoS computational biology
- Peng Tao + 3 more
The divergence in folding pathways between RNA co-transcriptional folding (CTF) and free folding (FF) is crucial for understanding dynamic functional regulation of RNAs. Here, we developed a simplified all-atom molecular dynamics framework to systematically compare the folding kinetics of an RNA hairpin (PDB:1ZIH) under CTF and FF conditions. By analyzing over 800 microseconds of simulated trajectory, we found that despite convergence to identical native conformations across CTF simulations (with varied transcription rates) and FF simulations, they exhibit distinct preferences for the folding pathways defined by the order of base-pair formation. Conformational space analysis shows that CTF biases the folding pathway by adopting more compact conformations than FF. Our findings provide atomic-scale insights into how temporal-spatial coupling of transcription and folding diversifies RNA folding dynamics.
- Research Article
- 10.1038/s41467-025-60425-w
- Jun 1, 2025
- Nature Communications
- Courtney E Szyjka + 2 more
Cotranscriptional RNA folding pathways typically involve the sequential formation of folding intermediates. Existing methods for cotranscriptional RNA structure probing map the structure of nascent RNA in the context of a terminally arrested transcription elongation complex. Consequently, the rearrangement of RNA structures as nucleotides are added to the transcript can be inferred but is not assessed directly. Here, we describe linked-multipoint Transcription Elongation Complex RNA structure probing (TECprobe-LM), which assesses the cotranscriptional rearrangement of RNA structures by sequentially positioning E. coli RNAP at two or more points within a DNA template so that nascent RNA can be chemically probed. We validate TECprobe-LM by measuring known folding events that occur within the E. coli signal recognition particle RNA, Clostridium beijerinckii pfl ZTP riboswitch, and Bacillus cereus crcB fluoride riboswitch folding pathways. Our findings establish TECprobe-LM as a strategy for observing cotranscriptional RNA folding events directly using chemical probing.
- Research Article
- 10.1101/2025.05.28.656632
- May 30, 2025
- bioRxiv
- Rosa A Romero + 8 more
SUMMARYRiboswitches are non-coding RNA motifs that regulate gene expression in response to ligand binding. The glycine tandem riboswitch (GTR) is notable because it comprises two distinct glycine aptamers that interact extensively. These inter-aptamer contacts drive conformational changes in the downstream expression platform to control gene expression. Despite extensive studies, the role of glycine and RNA folding pathways in co-transcriptional regulation remains unclear. Here, we integrate single-molecule kinetic analysis, co-transcriptional RNA structure probing, and computational modeling to reveal that the GTR processes multiple molecular inputs sequentially, guided by polymerase pausing. Our findings elucidate its stepwise 5’-to-3’ folding pathway and demonstrate how sequential glycine binding to each aptamer, K+ binding to a kink-turn, non-native RNA folding intermediates, inter-aptamer docking that drives binding site pre-organization, and modulation by the transcription factor NusA collectively orchestrate co-transcriptional gene regulation. These results support a model in which glycine binding cooperativity arises through non-equilibrium mechanisms rather than a classical concerted model.
- Research Article
3
- 10.1038/s41467-025-57415-3
- Mar 10, 2025
- Nature Communications
- Skyler L Kelly + 1 more
RNA can fold into structures that mediate diverse cellular functions. Understanding how RNA primary sequence directs the formation of functional structures requires methods that can comprehensively assess how changes in an RNA sequence affect its structure and function. Here we have developed a platform for performing high-throughput cotranscriptional RNA biochemical assays, called Transcription Elongation Complex display (TECdisplay). TECdisplay measures RNA function by fractionating a TEC library based on the activity of cotranscriptionally displayed nascent RNA. In this way, RNA function is measured as the distribution of template DNA molecules between fractions of the transcription reaction. This approach circumvents typical RNA sequencing library preparation steps that can cause technical bias. We used TECdisplay to characterize the transcription antitermination activity of >1 million variants of the Clostridium beijerinckii pfl ZTP riboswitch designed to perturb steps within its cotranscriptional folding pathway. Our findings establish TECdisplay as an accessible platform for high-throughput RNA biochemical assays.
- Research Article
- 10.1021/acs.jpcb.4c06581
- Feb 24, 2025
- The journal of physical chemistry. B
- Sha Gong + 2 more
Understanding the folding behaviors and cellular roles is important to fully illuminate functions of riboswitches in vivo. Since riboswitches act without the need for protein factors, RNA structure prediction methods are ideally suited for computationally analyzing their cellular activities. Here, a helix-based RNA folding theory is used to predict the cotranscriptional folding pathways of the flavin mononucleotide (FMN)-binding riboswitch from Bacillus subtilis (B. subtilis) under different conditions. The results show that the efficient function is determined by a balance between the transcription speed, pausing, and the binding rates of the metabolite. According to the predicted behaviors, a general kinetic model is established to investigate how the riboswitch couples sensing and regulatory functions to help bacteria respond to environmental changes at the system levels.
- Research Article
- 10.1016/j.bpj.2024.11.926
- Feb 1, 2025
- Biophysical Journal
- Christine Stephen + 3 more
BPS2025 - Mapping co-transcriptional folding transitions in manganese-sensing riboswitches
- Research Article
- 10.1016/j.bpj.2024.11.2267
- Feb 1, 2025
- Biophysical Journal
- Christine Stephen + 3 more
BPS2025 - Mapping co-transcriptional folding transitions in manganese-sensing riboswitches
- Research Article
3
- 10.1038/s41467-024-55601-3
- Jan 22, 2025
- Nature Communications
- David Z Bushhouse + 2 more
Riboswitches are ligand-responsive gene-regulatory RNA elements that perform key roles in maintaining cellular homeostasis. Understanding how riboswitch sensitivity to ligand (EC50) is controlled is critical to explain how highly conserved aptamer domains are deployed in a variety of contexts with different sensitivity demands. Here we uncover roles by which RNA folding dynamics control riboswitch sensitivity in cells. By investigating the Clostridium beijerinckii pfl ZTP riboswitch, we identify multiple mechanistic routes of altering expression platform sequence and structure to slow RNA folding, all of which enhance riboswitch sensitivity. Applying these methods to riboswitches with diverse aptamer architectures and regulatory mechanisms demonstrates the generality of our findings, indicating that any riboswitch that operates in a kinetic regime can be sensitized by slowing expression platform folding. Our results add to the growing suite of knowledge and approaches that can be used to rationally program cotranscriptional RNA folding for biotechnology applications, and suggest general RNA folding principles for understanding dynamic RNA systems in other areas of biology.
- Research Article
- 10.1016/j.csbj.2025.06.005
- Jan 1, 2025
- Computational and structural biotechnology journal
- Lei Jin + 1 more
Computational modeling of cotranscriptional RNA folding.
- Research Article
- 10.1039/d5nh00241a
- Jan 1, 2025
- Nanoscale horizons
- Arpan De + 2 more
The structural attributes of RNA, especially co-transcriptional folding, have enabled RNA origami to construct complex 3D architectures, serving as a platform to build RNA-based nanodevices. However, the potential of RNA in molecular electronics is largely unexplored, mainly due to its inherent conformational fluctuations. Although this variability poses challenges for a precise understanding of the conductance properties of RNA, it also offers opportunities for tuning RNA-based molecular devices by exploiting their dynamic nature. Accordingly, our objectives in this paper are twofold: (i) how do conformational fluctuations impact the charge transport properties of single stranded RNA (ssRNA), and (ii) how can these fluctuations be controlled? Toward that end, we first established a benchmark for ssRNA instability compared to double stranded RNA (dsRNA) based on molecular dynamics. Subsequently, we explore quantum transport across 123 distinct conformations, which show that the average conductance of ssRNA is 1.7 × 10-3 G0, but with a high standard deviation of around 5.2 × 10-3G0. We demonstrate that the conductance of ssRNA is influenced primarily by backbone bending and nucleotide positioning. Specifically, while backbone bending tends to result in higher conductance at reduced end-to-end phosphorus distances, nucleotide positioning introduces significant stochasticity. To mitigate this variability, we also demonstrate that increasing the salt concentration can stabilize ssRNA, presenting a viable strategy for minimizing conductance fluctuations. Our findings reveal that if ssRNA conductance can be switched between folded and unfolded states, it can offer two distinct conductance modes. We anticipate the programmability of ssRNA folding and durability, coupled with its conductivity, can be leveraged for advancing molecular electronics.
- Research Article
- 10.1371/journal.pcbi.1012669
- Dec 13, 2024
- PLoS computational biology
- Pengyu Liu + 3 more
R-loops are a class of non-canonical nucleic acid structures that typically form during transcription when the nascent RNA hybridizes the DNA template strand, leaving the non-template DNA strand unpaired. These structures are abundant in nature and play important physiological and pathological roles. Recent research shows that DNA sequence and topology affect R-loops, yet it remains unclear how these and other factors contribute to R-loop formation. In this work, we investigate the link between nascent RNA folding and the formation of R-loops. We introduce tree-polynomials, a new class of representations of RNA secondary structures. A tree-polynomial representation consists of a rooted tree associated with an RNA secondary structure together with a polynomial that is uniquely identified with the rooted tree. Tree-polynomials enable accurate, interpretable and efficient data analysis of RNA secondary structures without pseudoknots. We develop a computational pipeline for investigating and predicting R-loop formation from a genomic sequence. The pipeline obtains nascent RNA secondary structures from a co-transcriptional RNA folding software, and computes the tree-polynomial representations of the structures. By applying this pipeline to plasmid sequences that contain R-loop forming genes, we establish a strong correlation between the coefficient sums of tree-polynomials and the experimental probability of R-loop formation. Such strong correlation indicates that the pipeline can be used for accurate R-loop prediction. Furthermore, the interpretability of tree-polynomials allows us to characterize the features of RNA secondary structure associated with R-loop formation. In particular, we identify that branches with short stems separated by bulges and interior loops are associated with R-loops.
- Research Article
- 10.1101/2024.11.26.625435
- Nov 26, 2024
- bioRxiv
- Leonard Schärfen + 3 more
SummaryAn RNA’s catalytic, regulatory, or coding potential depends on RNA structure formation. Because base pairing occurs during transcription, early structural states can govern RNA processing events and dictate the formation of functional conformations. These co-transcriptional states remain unknown. Here, we develop CoSTseq, which detects nascent RNA base pairing within and upon exit from RNA polymerases (Pols) transcriptome-wide in living yeast cells. By monitoring each nucleotide’s base pairing activity during transcription, we identify distinct classes of behaviors. While 47% of rRNA nucleotides remain unpaired, rapid and delayed base pairing – with rates of 48.5 and 13.2 kb-1of transcribed rDNA, respectively – typically completes when Pol I is only 25 bp downstream. We show that helicases act immediately to remodel structures across the rDNA locus and facilitate ribosome biogenesis. In contrast, nascent pre-mRNAs attain local structures indistinguishable from mature mRNAs, suggesting that refolding behind elongating ribosomes resembles co-transcriptional folding behind Pol II.
- Research Article
- 10.1101/2024.10.14.618260
- Oct 17, 2024
- bioRxiv : the preprint server for biology
- Courtney E Szyjka + 2 more
Cotranscriptional RNA folding pathways typically involve the sequential formation of folding intermediates. Existing methods for cotranscriptional RNA structure probing map the structure of nascent RNA in the context of a terminally arrested transcription elongation complex. Consequently, the rearrangement of RNA structures as nucleotides are added to the transcript can be inferred but is not assessed directly. To address this limitation, we have developed linked-multipoint Transcription Elongation Complex RNA structure probing (TECprobe-LM), which assesses the cotranscriptional rearrangement of RNA structures by sequentially positioning E. coli RNAP at two or more points within a DNA template so that nascent RNA can be chemically probed. We validated TECprobe-LM by measuring known folding events that occur within the E. coli signal recognition particle RNA, Clostridium beijerinckii pfl ZTP riboswitch, and Bacillus cereus crcB fluoride riboswitch folding pathways. Our findings establish TECprobe-LM as a strategy for detecting cotranscriptional RNA folding events directly using chemical probing.
- Research Article
1
- 10.1261/rna.080074.124
- Oct 4, 2024
- RNA (New York, N.Y.)
- Sébastien H Eschbach + 4 more
Riboswitches are metabolite-binding RNA regulators that modulate gene expression at the levels of transcription and translation. One of the hallmarks of riboswitch regulation is that they undergo structural changes upon metabolite binding. While a lot of effort has been put to characterize how the metabolite is recognized by the riboswitch, there is still relatively little information regarding how ligand sensing is performed within a transcriptional context. Here, we study the ligand-dependent cotranscriptional folding of the FMN-sensing ribB riboswitch of Escherichia coli Using RNase H assays to study nascent ribB riboswitch transcripts, DNA probes targeting the P1 and sequestering stems indicate that FMN binding leads to the protection of these regions from RNase H cleavage, consistent with the riboswitch inhibiting translation initiation when bound to FMN. Our results show that ligand sensing is strongly affected by the position of elongating RNA polymerase, which is defining an FMN-binding transcriptional window that is bordered in its 3' extremity by a transcriptional pause site. Also, using successively overlapping DNA probes targeting a subdomain of the riboswitch, our data suggest the presence of a previously unsuspected helical region involving the 3' strand of the P1 stem. Our results show that this helical region is conserved across bacterial species, thus suggesting that this predicted structure, the anti*-P1 stem, is involved in the FMN-free conformation of the ribB riboswitch. Overall, our study further demonstrates that intricate folding strategies may be used by riboswitches to perform metabolite sensing during the transcriptional process.
- Research Article
- 10.3390/ijms251910495
- Sep 29, 2024
- International journal of molecular sciences
- Christine Stephen + 2 more
Antibiotic resistance is a critical global health concern, causing millions of prolonged bacterial infections every year and straining our healthcare systems. Novel antibiotic strategies are essential to combating this health crisis and bacterial non-coding RNAs are promising targets for new antibiotics. In particular, a class of bacterial non-coding RNAs called riboswitches has attracted significant interest as antibiotic targets. Riboswitches reside in the 5'-untranslated region of an mRNA transcript and tune gene expression levels in cis by binding to a small-molecule ligand. Riboswitches often control expression of essential genes for bacterial survival, making riboswitch inhibitors an exciting prospect for new antibacterials. Synthetic ligand mimics have predominated the search for new riboswitch inhibitors, which are designed based on static structures of a riboswitch's ligand-sensing aptamer domain or identified by screening a small-molecule library. However, many small-molecule inhibitors that bind an isolated riboswitch aptamer domain with high affinity in vitro lack potency in vivo. Importantly, riboswitches fold and respond to the ligand during active transcription in vivo. This co-transcriptional folding is often not considered during inhibitor design, and may explain the discrepancy between a low Kd in vitro and poor inhibition in vivo. In this review, we cover advances in riboswitch co-transcriptional folding and illustrate how intermediate structures can be targeted by antisense oligonucleotides-an exciting new strategy for riboswitch inhibitor design.
- Research Article
1
- 10.1016/j.jmb.2024.168771
- Aug 30, 2024
- Journal of Molecular Biology
- Elsa D.M Hien + 3 more
Cotranscriptional Folding of a 5′ Stem-loop in the Escherichia coli tbpA Riboswitch at Single-nucleotide Resolution
- Research Article
2
- 10.1371/journal.pone.0307541
- Jul 22, 2024
- PloS one
- Xiaolan Huang + 1 more
RNA pseudoknots play a crucial role in various cellular functions. Established pseudoknots show significant variation in both size and structural complexity. Specifically, three-stemmed pseudoknots are characterized by an additional stem-loop embedded in their structure. Recent findings highlight these pseudoknots as bacterial riboswitches and potent stimulators for programmed ribosomal frameshifting in RNA viruses like SARS-CoV2. To investigate the possible presence of functional three-stemmed pseudoknots in human mRNAs, we employed in-house developed computational methods to detect such structures within a dataset comprising 21,780 full-length human mRNA sequences. Numerous three-stemmed pseudoknots were identified. A selected set of 14 potential instances are presented, in which the start codon of the mRNA is found in close proximity either upstream, downstream, or within the identified three-stemmed pseudoknot. These pseudoknots likely play a role in translational initiation regulation. The probability of their existence gains support from their ranking as the most stable pseudoknot identified in the entire mRNA sequence, structural conservation across homologous mRNAs, stereochemical feasibility as demonstrated by structural modeling, and classification as members of the CPK-1 pseudoknot family, which includes many well-established pseudoknots. Furthermore, in four of the mRNAs, two or three closely spaced or tandem three-stemmed pseudoknots were identified. These findings suggest the frequent occurrence of three-stemmed pseudoknots in human mRNAs. A stepwise co-transcriptional folding mechanism is proposed for the formation of a three-stemmed pseudoknot structure. Our results not only provide fresh insights into the structures and functions of pseudoknots but also unveil the potential to target pseudoknots for treating human diseases.
- Research Article
3
- 10.1021/acs.biochem.3c00665
- Jun 12, 2024
- Biochemistry
- Elsa D M Hien + 3 more
Riboswitches are RNA-regulating elements that mostly rely on structural changes to modulate gene expression at various levels. Recent studies have revealed that riboswitches may control several regulatory mechanisms cotranscriptionally, i.e., during the transcription elongation of the riboswitch or early in the coding region of the regulated gene. Here, we study the structure of the nascent thiamin pyrophosphate (TPP)-sensing thiC riboswitch in Escherichia coli by using biochemical and enzymatic conventional probing approaches. Our chemical (in-line and lead probing) and enzymatic (nucleases S1, A, T1, and RNase H) probing data provide a comprehensive model of how TPP binding modulates the structure of the thiC riboswitch. Furthermore, by using transcriptional roadblocks along the riboswitch sequence, we find that a certain portion of nascent RNA is needed to sense TPP that coincides with the formation of the P5 stem loop. Together, our data suggest that conventional techniques may readily be used to study cotranscriptional folding of nascent RNAs.
- Research Article
1
- 10.1093/nar/gkae362
- May 13, 2024
- Nucleic acids research
- Lei Jin + 4 more
The Trans-Activator Receptor (TAR) RNA, located at the 5'-end untranslated region (5' UTR) of the human immunodeficiency virus type 1 (HIV-1), is pivotal in the virus's life cycle. As the initial functional domain, it folds during the transcription of viral mRNA. Although TAR's role in recruiting the Tat protein for trans-activation is established, the detailed kinetic mechanisms at play during early transcription, especially at points of temporary transcriptional pausing, remain elusive. Moreover, the precise physical processes of transcriptional pause and subsequent escape are not fully elucidated. This study focuses on the folding kinetics of TAR and the biological implications by integrating computer simulations of RNA folding during transcription with nuclear magnetic resonance (NMR) spectroscopy data. The findings reveal insights into the folding mechanism of a non-native intermediate that triggers transcriptional pause, along with different folding pathways leading to transcriptional pause and readthrough. The profiling of the cotranscriptional folding pathway and identification of kinetic structural intermediates reveal a novel mechanism for viral transcriptional regulation, which could pave the way for new antiviral drug designs targeting kinetic cotranscriptional folding pathways in viral RNAs.
- Research Article
3
- 10.1093/nar/gkae231
- Apr 3, 2024
- Nucleic Acids Research
- Laura M Hertz + 8 more
A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of Escherichia coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37°C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65°C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.