In the application research of large-scale quantum communication network, one generally realizes resource allocation by constructing virtual service network and mapping it to actual physical space. In this mapping process, some assumptions are often made to simplify the model. For example, the key resource in the physical topology is assumed to be a fixed value, that is, the actual physical conditions and the performance differences of key supply caused by different protocols are ignored. This assumption may lead the network to fail to run appropriately in practical applications. In order to solve the above problems, from the perspective of link mapping, this paper proposes an improved virtual service mapping model and virtual service mapping algorithm with the quantum key distribution optical network as the underlying network, which makes it closer to the actual application scenario. On the one hand, by increasing the constraints of geographical location, the range from virtual nodes to the mappable physical nodes is reasonably restricted. On the other hand, from the perspective of hardware cost and actual key generation rate, the cost performance evaluation index is proposed to allocate and manage resources. In addition, by combining three mainstream quantum key distribution protocols (BB84, measurement-device-independent, and twin-field), we construct a universal virtual service mapping model in the quantum key distribution optical network, and realize the recommendation of the optimal protocol and the optimal allocation and management of resources.
Read full abstract