Autism spectrum disorder has long been conceptualized as a disorder of "atypical development of functional brain connectivity (which refers to correlations in activity levels of distant brain regions)." However, most of the research has focused on the connectivity between cortical regions, and much remains unknown about the developmental changes of functional connectivity between subcortical and cortical areas in autism spectrum disorder. We used the technique of resting-state functional magnetic resonance imaging to explore the developmental characteristics of intrinsic functional connectivity (functional brain connectivity when people are asked not to do anything) between subcortical and cortical regions in individuals with and without autism spectrum disorder aged 6-30 years. We focused on one important subcortical structure called striatum, which has roles in motor, cognitive, and affective processes. We found that cortico-striatal intrinsic functional connectivities showed opposite developmental trajectories in autism spectrum disorder and typically developing individuals, with connectivity increasing with age in autism spectrum disorder and decreasing or constant in typically developing individuals. We also found significant negative behavioral correlations between those atypical cortico-striatal intrinsic functional connectivities and autistic symptoms, such as social-communication deficits, and restricted/repetitive behaviors and interests. Taken together, this work highlights that the atypical development of cortico-subcortical functional connectivity might be largely involved in the neuropathological mechanisms of autism spectrum disorder.
Read full abstract