Cognitive Radio (CR) networks are envisioned as a key empowering technology of the fifth-generation (5G) wireless communication networks, which solves the major issues of 5G, like high-speed data transmission, seamless connectivity, and increased demand for mobile data. Another significant characteristic of the 5G network is green communications, as energy consumption from the communication field is predicted to rise remarkably by the year 2030. In this work, we are concerned about energy-related issues and propose a cooperation-based energy-aware reward scheme (CEAR) for next-generation green CR networks. The proposed CEAR scheme is based on the antenna and temporal diversity of the primary users (PUs). For providing the service to the PUs, the users of another network called cognitive users (CUs) work as a cooperative relay node, and, in return, they get more spectrum access opportunities as a reward from the primary network. The CUs with delay-tolerant data packets take a cooperative decision by recognizing the availability and traffic load of PUs, channel state information, and data transmission requirements. We utilize the optimal stopping protocol for solving the decision-making problem and use the backward induction method to obtain the optimal cooperative solution. The simulation results reveal notable enhancements in energy efficiency (EE) of CUs compared with other cooperative schemes. The proposed CEAR scheme is more energy-efficient for ultra-dense network deployment because results show that the CU’s EE, spectral efficiency (SE), and throughput improved with the increase of PUs.
Read full abstract