This article extends recent work on the Gaussian or quasi-maximum likelihood estimation of the parameters of a closed higher-order continuous time dynamic model by introducing exogenous variables into the model The method presented yields exact maximum likelihood estimates when the innovations are Gaussian and the exogenous variables are polynomials in time of degree not exceeding two, and it can be expected to yield very good estimates under more general conditions. It is applicable, in principle, to a system of any order with mixed stock and iow data. The precise formulas for its implementation are derived, in this article, for a second-order system in which both the endog-enous and exogenous variables are a mixture of stock and flow variables.
Read full abstract