Herein, we report the fabrication of graphene nanoplatelets (GNPs) reinforced zinc-copper (ZnCu) matrix composite coatings on a stainless-steel substrate using electro-co-deposition technique. The influence of varying concentrations of GNPs in the acidic electrolyte bath on the microstructure, chemical composition, phase structure, hardness, wear resistance, corrosion resistance, and antibacterial activity of ZnCu/GNPs composite coating was investigated. The microhardness of the ZnCu/GNPs composite coating with a GNPs concentration of 100 mg/L is compared with pure ZnCu coating, which has a 90 % significant enhancement, while (50 mg/L) has 86 %, and (25 mg/L) has 50 %. Also, ZnCu/GNPs composite coating showed a wear loss of 10 mg for 100 mg/L GNPs sample with an increase in microhardness. The bacterial resistance assays were conducted against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results reveal a notable improvement in the anti-bacterial activity of the ZnCu/GNPs composite coating. The corrosion rate of the ZnCu/GNPs composite coating in 3.5 wt % NaCl solution steadily decreased when the concentration of GNPs in the electrolyte bath was increased to 100 mg/L. These findings hold great potential for various applications, including healthcare settings where preventing healthcare-associated infections is critical, public infrastructure to prolong the lifespan of structures, and marine coatings to protect against corrosion in harsh marine environments.
Read full abstract