An analysis of the existing and prospective blade seal designs for Kaplan runners was performed. The selected design type provides the maximum ecological safety for Kaplan runners. A 3D model of runner hub sector with the trunnion, inner and outer bushes of blade trunnion was generated taking into account the cyclic symmetry of the runner design based on the modern automated design engineering system. A diagram of application of external loads from the blade and lever to the given 3D model of the Kaplan runner hub segment was developed. The contact problem was formulated to determine the stress-strain state as well as the contact pressures at the inner and outer bronze bushes of the Kaplan runner blade trunnions in different operating conditions. The problem was formulated for the finite element method, taking into consideration the diagram of external load application and contact restraints to the given 3D model of the Kaplan runner hub sector in the software package for engineering calculations. Using calculation results, principal stress distribution diagrams and the distribution diagram for the contact pressure at the outer and inner bronze bushes of blade trunnions were obtained. Strength calculation results were processed using the data of principal stress distribution diagrams, and the contact pressure values at the inner and outer bronze bushes of blade trunnions were determined. A methodology for further use of the given analytical model in the evaluation of stress-strain state of Kaplan runners involving modern automated design engineering systems and software package for engineering calculations was developed. The comparison of stress-strain states of the blade trunnion bushes was performed for the old and new designs of the Kaplan runner seal.
Read full abstract