3D-printed building construction technology is developing in most countries, such as France, China, Russia and others, and the dry mixes and equipment used are being improved. The development of 3D-printing construction technology is dictated by its many advantages: architectural diversity, speed and automation of the technological process of construction of buildings and structures with a noticeable reduction in the cost of production. However, there are a number of problems of this technology that are waiting for optimal solutions. The paper proposes solutions to two such problems: firstly, the choice of mixture with gypsum and gypsum-cement binders, ensuring the continuity of the 3D printing process of the building and allowing the construction of buildings up to three floors with sufficient safety margin, high seismic stability, as well as with good heat and noise insulation; secondly, the design of buildings with a rational structural and technological solution of the roof and floor, allowing the interface of these structures with load-bearing printed walls. Different compositions of dry mixes were tested in a series of field tests of large-sized wall blocks made with the use of a construction 3D-printer and filled with especially light porous expanded claydite, expanded clay concrete or heat-insulating foam gypsum with subsequent testing on press equipment of increased load-carrying capacity (with determination of bearing capacity and deformability of the large-sized block). When designing low-rise buildings, erected by additive technology, as an optimal design of floors, it is proposed to use frame-monolithic beam structures made of metal thin-walled steel galvanized profiles, filled with foam gypsum mix, providing heat and noise insulation and covered with a thin layer of high-strength self-leveling gypsum mix, providing the necessary structural strength of the floor and, accordingly, the minimum load on the foundation.
Read full abstract