Abstract The Job Shop Scheduling Problem (JSSP) is a complex combinatorial optimization problem. While online Reinforcement Learning (RL) has shown promise by quickly finding acceptable solutions for JSSP, it faces key limitations: it requires extensive training interactions from scratch leading to sample inefficiency, cannot leverage existing high-quality solutions from traditional methods like Constraint Programming (CP), and require simulated environments to train in, which are impracticable to build for complex scheduling environments. We introduce Offline Learned Dispatching (Offline-LD), an offline reinforcement learning approach for JSSP, which addresses these limitations by learning from historical scheduling data. Our approach is motivated by scenarios where historical scheduling data and expert solutions are available or scenarios where online training of RL approaches with simulated environments is impracticable. Offline-LD introduces maskable variants of two Q-learning methods, namely, Maskable Quantile Regression DQN (mQRDQN) and discrete maskable Soft Actor-Critic (d-mSAC), that are able to learn from historical data, through Conservative Q-Learning (CQL), whereby we present a novel entropy bonus modification for d-mSAC, for maskable action spaces. Moreover, we introduce a novel reward normalization method for JSSP in an offline RL setting. Our experiments demonstrate that Offline-LD outperforms online RL on both generated and benchmark instances when trained on only 100 solutions generated by CP. Notably, introducing noise to the expert dataset yields comparable or superior results to using the expert dataset, with the same amount of instances, a promising finding for real-world applications, where data is inherently noisy and imperfect.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
5047 Articles
Published in last 50 years
Related Topics
Articles published on Constraint Programming
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
4873 Search results
Sort by Recency