Регресiйний аналiз є iстотною частиною математичної та прикладної статистики. Нелiнiйний регресiйний аналiз є значним розширенням та ускладненням класичного лiнiйного регресiйного аналiзу, завдяки використанню нелiнiйних або частково нелiнiйних за параметрами моделей, якi адекватнiше описують, нiж лiнiйнi моделi, явища, що потребують статистичного аналiзу. Велика кiлькiсть прикладних проблем у численних наукових, технiчних та гуманiтарних галузях знань дають поштовх розвитку нелiнiйного регресiйного аналiзу. Задача оцiнювання векторного параметра сигналу в моделях спостереження «сигнал + шум» є добре вiдомою проблемою статистики випадкових процесiв, та у випадку нелiнiйного параметра сигналу – задачею нелiнiйного регресiйного аналiзу. Серед рiзноманiтностi задач нелiнiйного регресiйного аналiзу оцiнювання амплiтуд та кутових частот суми гармонiчних коливань, що спостерiгається на фонi випадкового шуму, займає значне мiсце, завдяки її численним застосуванням. Статистичнi моделi такого типу називаються тригонометричними моделями регресiї, а проблема статистичного оцiнювання її параметрiв називається задачею виявлення прихованих перiодичностей. Статтю присвячено вивченню тригонометричної моделi регресiї, в якiй випадковий шум є лiнiйним Левi-керованим стацiонарним четвертого порядку випадковим процесом iз нульовим середнiм, iнтегровную та iнтегровную з квадратом iмпульсною перехiдною функцiєю. Це припущення призводить до iнтегровностi коварiацiйної функцiї та кумулянтної функцiї 4-го порядку. Для оцiнювання амплiтуд та кутових частот такої тригонометричної моделi ми використовуємо оцiнки найменших квадратiв у сенсi Уолкера, тобто розглянуто спецiальну множину параметрiв, щоб розрiзнити належним чином рiзнi кутовi частоти в сумi гармонiчних коливань. У статтi доведено теорему про сильну консистентнiсть оцiнки найменших квадратiв за описаними вище припущеннями щодо випадкового шуму. Для отримання такого результату було доведено дуже важливу лему про рiвномiрну збiжнiсть майже напевно середнього значення перетворення Фурьє лiнiйного Левi-керованого випадкового процеса. Ця лема є головним iнструментом доведення теореми про сильну консистентнiсть. Для доведення теореми, по-перше, знаходимо деякi представлення оцiнок найменших квадратiв амплiтуд через вiдповiднi оцiнки кутових частот. По-друге, ми пiдставляємо цi формули у функцiонал методу найменших квадратiв. Останнiй крок доведення полягає у перетвореннi L2-норми рiзницi мiж емпiричною тригонометричною функцiєю регресiї та iстиною функцiєю регресiї таким чином, що ця норма прямує до нуля майже напевно тодi i тiльки тодi, коли оцiнки є сильно консистентними.
Read full abstract