Conjunctival defects severely impair ocular surface homeostasis and vision.However, the existing conjunctival reconstruction methods are still unable to achieve satisfactory functional replacement of conjunctiva. Scaffold materials that provide a more stem-cell-friendly microenvironment are in urgent need of improvement. Herein we reported a functional conjunctival reconstruction scaffold constructed from decellularized matrix derived from rabbit subconjunctival fibroblasts (DM-SCF) loaded with conjunctival epithelial stem cells (CjESCs) for ocular surface repair. The DM-SCF had a thickness and mechanical strength close to that of normal conjunctiva and showed excellent biocompatibility. CjESCs inoculated on DM-SCF maintained good stem cell properties, which showed long-term maintenance of low differentiation and good proliferation activity.DM-SCF transplantation with CjESCs showed satisfactory results in rabbit models of a large conjunctival defect.The conjunctiva was reconstructed with abundant goblet cell expression and regular fiber arrangement. Protein mass spectrometry revealed the active extracellular matrix components of DM-SCF, regulating the activation of Wnt/β-catenin and Notch pathways for stem cell maintenance. Overall, our study developed a promising new strategy for ocular surface reconstruction by optimizing bioactive scaffold and providing functional stem cell niche, so as to achieve long-standing and superior functional repair.
Read full abstract