An alcohol-free, eco-friendly technique was adapted for the synthesis of undoped ZnO and Cs-(cesium) doped ZnO nanoparticles (NPs). The effect of annealing and dopant concentration on its structural and optical properties was investigated. X-ray diffraction results confirmed the formation of polycrystalline hexagonal wurtzite structure and enhanced crystallinity was observed for 1 mol%: Cs-doped ZnO NPs. Scanning electron microscopy results revealed triangular-shaped NPs and increase in the crystallite size is noticed with increase in dopant concentration. UV–visible results showed shift in the band edge toward higher wave length side with increasing Cs concentration. Reduction in bandgap was observed for Cs-doped ZnO NPs, due to quantum confinement effect. Transmittance value increased to 86 % with the inclusion of Cs in ZnO lattice. Room temperature photoluminescence analysis of Cs-doped ZnO NPs reveals bandedge emission along with 450 nm emission due to Zn vacancy and Zn interstitial defects. Electrical measurements confirmed the realization of p-type conductivity in Cs-doped ZnO NPs with a carrier concentration of 1.3 × 1018/cm3.
Read full abstract