Large contingency tables summarizing categorical variables arise in many areas. One example is in biology, where large numbers of biomarkers are cross-tabulated according to their discrete expression level. Interactions of the variables are of great interest and are generally studied with log-linear models. The structure of a log-linear model can be visually represented by a graph from which the conditional independence structure can then be easily read off. However, since the number of parameters in a saturated model grows exponentially in the number of variables, this generally comes with a heavy computational burden. Even if we restrict ourselves to models of lower-order interactions or other sparse structures, we are faced with the problem of a large number of cells which play the role of sample size. This is in sharp contrast to high-dimensional regression or classification procedures because, in addition to a high-dimensional parameter, we also have to deal with the analogue of a huge sample size. Furthermore, high-dimensional tables naturally feature a large number of sampling zeros which often leads to the nonexistence of the maximum likelihood estimate. We therefore present a decomposition approach, where we first divide the problem into several lower-dimensional problems and then combine these to form a global solution. Our methodology is computationally feasible for log-linear interaction models with many categorical variables each or some of them having many levels. We demonstrate the proposed method on simulated data and apply it to a bio-medical problem in cancer research.
Read full abstract