The binary GAL4-UAS expression system has been widely used in Drosophila to achieve tissue-specific expression of genes. To further allow for simultaneous spatial and conditional control of gene expression in existing GAL4 expression lines backgrounds, temperature and chemical controllable GAL80 variants have been engineered. Here we add a new drug stabilizable GAL80ds variant, by fusing it to a low-background DHFR-22-DD. We first quantify both single (DD-GAL80) and double (DD-GAL80-DD) architectures and show varied background and activation levels. Next, we demonstrate the utility of GAL80dsDrosophila line to regulate a cell death gene ectopically, in a drug-dependent manner, by utilizing an existing tissue-specific GAL4 driver that regulates the expression of a cell death gene under a UAS. Finally, we showcase the usefulness of GAL80ds in tight drug-mediated regulation of a target gene, from an endogenous locus, by utilizing an existing tissue-specific GAL4 to drive the expression of a dead Cas9 variant fused to the transcriptional coactivator nejire, under a UAS and in gRNA lines. Overall, these new GAL80ds lines expand the use of the wide variety of existing tissue-specific GAL4 and gene-specific gRNA lines. This enables conditional control of genes, both ectopically and endogenously, for a broad array of gene expression control applications.
Read full abstract