This study introduces a photonic stimulation-based synaptic transistor utilizing oblique angle deposition (OAD) of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT). While OAD enables advanced nanostructures, its application to organic materials remains largely unexplored. Here, the electrical characteristics and photoinduced trap behavior of obliquely deposited DNTT transistors are systematically investigated, successfully replicating key synaptic functions. OAD-controlled grain size and spacing in the DNTT channel yield distinct performance metrics compared to conventional devices. The introduced trap regions enable stable synaptic behavior across diverse gate voltage (VG) conditions. By adjusting presynaptic photonic pulse intensity, duration, and repetition, a robust transition is achieved to long-term memory (LTM). The device further demonstrates reliable optoelectronic synaptic operation over 52 durability cycles. Concurrent photonic stimulation enables parallel potentiation-depression dynamics, enhancing processing speed and performance, highlighting its promise for next-generation neuromorphic computing. Its application is also showed in printed circuit board (PCB) defect inspection, successfully mimicking biological synapses under simultaneous photonic stimulation.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
677 Articles
Published in last 50 years
Articles published on Concurrent Stimulation
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
658 Search results
Sort by Recency