Kinwat crystalline inlier exposes Palaeoproterozoic granitoids belonging to the northern extensions of younger phase of Peninsular gneissic complex (PGC) within Deccan Trap country in Eastern Dharwar Craton (EDC) and bounded in south by a major NW-SE trending lineament (Kaddam fault). Geochemically, the Kinwat granitoids are similar to high-K, calc-alkaline to shoshonite magnesian granitoids and subdivided into two major groups, i.e. felsic group (pink and grey granites) and intermediate to felsic group (hybrid granitoids). The felsic group (∼67–74% SiO2) shares many features with Neoarchaean to Palaeoproterozoic high potassic granites of PGC such as higher LILE and LREE content and marked depletion in Eu, P and HFSE, especially Nb, Ti, relative to LILE and LREE. The hybrid granitoids (∼58–67% SiO2) have comparatively higher Ca, Mg and Na contents and slightly lower REE content than the granitoids of felsic group. Both, felsic and hybrid granitoids are metaluminous to weakly peraluminous and belong to highly fractionated I-type suite as evidenced by negative correlation of SiO2 with MgO, FeOt, CaO, Na2O, Al2O3, whereas K2O, Rb and Ba show sympathetic relationship with SiO2. Moderate to strong fractionated REE patterns (Ce/YbN: ∼54–387) and strong negative Eu anomalies (Eu/Eu*: 0.13–0.41) are quite apparent in these granitoids. The geochemical characteristics together with mineralogical features such as presence of biotite±hornblende as the dominant ferromagnesian mineral phases point towards intracrustal magma source, i.e. derivation of magma by partial melting of probably tonalitic igneous protolith at moderate crustal levels for felsic granites, whereas hybrid granitoids appear to be products of juvenile mantle-crust interaction, in an active continental margin setting.
Read full abstract