Rose-like NiCo nanoflowers were synthesized by homogeneous, one-pot polyol reduction of Ni and Co-acetates in presence of an amphiphilic triblock copolymer and KOH. 1,2-propanediol was used as solvent-cum-reducing agent as no external reducing agent was found to be necessary in this process. Detailed x-ray diffraction and morphological characterizations confirmed formation of fcc hierarchical NiCo nanoflowers containing 2D nanosheet-like subunits (thickness of about 30nm) with an average diameter of ~700nm. Amphiphilic polymer played a pivotal role in the growth of nanorose as it favored a preferential growth of nanocrystals along a particular crystal plane as was observed in transmission electron microscopy. Effects of other parameters like use of hydrophilic polymer, surfactants, ratio of initial metal concentrations, choice of polyol media and concentration of KOH on the morphology of nanoflowers were also investigated. Room temperature magnetic studies revealed higher saturation magnetization and low coercivity (108.6emu/g and 78.4Oe) of nanorose. Based on LaMer model, a kinetically-controlled growth mechanism for the formation of NiCo nanorose is also proposed.
Read full abstract