The ability to program has become an essential competence for individuals in an increasingly digital world. However, access to programming education remains unequal, particularly in non-WEIRD (Western, Educated, Industrialized, Rich, and Democratic) contexts. This study presents a dataset resulting from an educational intervention designed to foster programming competencies and computational thinking skills among primary school students aged 8 to 12 years in Milagro, Ecuador. The intervention integrated Scratch, a block-based programming environment that simplifies coding by eliminating syntactic barriers, and the CARAMBA recommendation system, which provided personalized learning paths based on students’ progression and preferences. A structured educational process was implemented, including an initial diagnostic test to assess logical reasoning, guided activities in Scratch to build foundational skills, a phase of personalized practice with CARAMBA, and a final computational thinking evaluation using a validated assessment instrument. The resulting dataset encompasses diverse information: demographic data, logical reasoning test scores, computational thinking test results pre- and post-intervention, activity logs from Scratch, recommendation histories from CARAMBA, and qualitative feedback from university student tutors who supported the intervention. The dataset is anonymized, ethically collected, and made available under a CC-BY 4.0 license to encourage reuse. This resource is particularly valuable for researchers and practitioners interested in computational thinking development, educational data mining, personalized learning systems, and digital equity initiatives. It supports comparative studies between WEIRD and non-WEIRD populations, validation of adaptive learning models, and the design of inclusive programming curricula. Furthermore, the dataset enables the application of machine learning techniques to predict educational outcomes and optimize personalized educational strategies. By offering this dataset openly, the study contributes to filling critical gaps in educational research, promoting inclusive access to programming education, and fostering a more comprehensive understanding of how computational competencies can be developed across diverse socioeconomic and cultural contexts.
Read full abstract