Accurate wind power forecasting is essential for efficient energy management and grid stability, enabling energy providers to balance supply and demand, optimize renewable energy integration, reduce operational costs, and enhance power grid reliability. The Echo State Network (ESN) is widely used for modeling nonlinear dynamic systems due to its simple and rapid training process. However, ESNs can be prone to system errors, leading to inaccurate models when handling high-order nonlinear complexities. To overcome this, we developed the Error Compensation Transfer Learning Echo State Network (ETL-ESN), which combines a computing layer based on ESN and a compensation layer using transfer learning. Our model identifies error auto-correlation as a key factor that increases variance in ESN predictions, and addresses this with an error compensation layer to reduce system errors. We further leverage transfer learning to prevent overfitting within the error domain. Extensive experiments using real-world wind power data demonstrate that the ETL-ESN model reduces training time from 65 s to 2 s compared to LSTM, while lowering MAE by up to 95%. The ETL-ESN achieves a 95% to 98% improvement in prediction accuracy across different turbines compared to traditional models. The code and datasets used in this study are available at GitHub repository https://github.com/zhuyingqin/Error-Transfer-ESN for further research and replication.
Read full abstract