In previous work it was shown that there is an epireflection ψ of the category of all compact normal, joinfit frames, with skeletal maps, in the full subcategory of frames which are also strongly projectable, and that ψ restricts to the epicompletion e, which is the absolute reflection on compact regular frames. In the first part of this paper it is shown that ψ is a monoreflection and that the reflection map is, in fact, closed. Restricted to coherent frames and maps, ψ A can then be characterized as the least strongly projectable, coherent, normal, joinfit frame in which A can be embedded as a closed, coherent, and skeletal subframe. The second part discusses the role of the nucleus d in this context. On algebraic frames with coherent skeletal maps d becomes an epireflection. Further, it is shown that e = d · ψ epireflects the category of coherent, normal, joinfit frames, with coherent skeletal maps, in the subcategory of those frames which are also regular and strongly projectable, which are epicomplete. The action of e is not monoreflective.
Read full abstract