We discuss dimension theory in the class of all topological groups. For locally compact topological groups there are many classical results in the literature. Dimension theory for non-locally compact topological groups is mysterious. It is for example unknown whether every connected (hence at least 1-dimensional) Polish group contains a homeomorphic copy of [0,1]. And it is unknown whether there is a homogeneous metrizable compact space the homeomorphism group of which is 2-dimensional. Other classical open problems are the following ones. Let G be a topological group with a countable network. Does it follow that dimG=indG=IndG? The same question if X is a compact coset space. We also do not know whether the inequality dim(G×H)≤dimG+dimH holds for arbitrary topological groups G and H which are subgroups of σ-compact topological groups. The aim of this paper is to discuss such and related problems. But we do not attempt to survey the literature.
Read full abstract