Transitional waters are important habitats both for biodiversity and ecological functions, providing valuable natural resources and relevant ecosystem services. However, they are highly susceptible to climate changes and anthropogenic pressures responsible for biodiversity losses and require specific biomonitoring programs. Benthic macroinvertebrates are suitable as ecological indicators of transitional waters, being affected by biological, chemical, and physical conditions of the ecosystems about their life cycles and space-use behaviour. The advent of high-throughput sequencing technologies has allowed biodiversity investigations, at the molecular level, in multiple ecosystems and for different ecological guilds. Benthic macroinvertebrate communities’ composition has been investigated, at the molecular level, mainly through DNA extracted from sediments in marine and riverine ecosystems. In this work, benthic macroinvertebrate communities are explored through eDNA metabarcoding from water samples in a Mediterranean transitional water ecosystem. This research highlighted the validity of eDNA metabarcoding as an efficient tool for the assessment of benthic macroinvertebrate community structure in transitional waters, unveiling the spatial heterogeneity of benthic macroinvertebrate communities correlated to the measured environmental gradients. The results suggest that peculiar features of transitional water ecosystems, such as shallow waters and limited currents, facilitate the assessment of benthic macroinvertebrate communities through environmental DNA analysis from surface water samples, opening for more rapid and accurate monitoring programs for these valuable ecosystems.
Read full abstract